Battery-less Absolute Encoder Type

 Electric Actuators
Restart from the last stop position is possible.

Easy operation restart after recovery of the power supply

The position information is held by the encoder even when the power supply is turned off. A return to origin operation is not necessary when the power supply is recovered.
Slide Table LES Series

| Size 25 |
| :---: | ---: |
| p. 23, 25 |

Compact type LES Series

High rigidity type LESH Series

Electric Gripper 2-Finger Type LEHF Series

Rotary Table
LER Series

LEF Series
 Model Selection

Speed-Work Load Graph (Guide)

For Battery-less Absolute (Step Motor 24 VDC), In-line Motor Type

Items not listed are the same as those of the standard product. For details, refer to the Web Catalog

* The following graphs show the values when moving force is 100%.

LEFS25/Ball Screw Drive

Vertical

LEFS32/Ball Screw Drive

Horizontal

Vertical

LEFS40/Ball Screw Drive

Vertical

Speed-Work Load Graph (Guide)
For Battery-less Absolute (Step Motor 24 VDC), Motor Parallel Type

Items not listed are the same as those of the standard product. For details, refer to the Web Catalog

* The following graphs show the values when moving force is 100%.

LEFS25(L/R)/Ball Screw Drive

Vertical

LEFS32(L/R)/Ball Screw Drive

Horizontal

Vertical

LEFS40(L/R)/Ball Screw Drive
Horizontal

Vertical

For details on controllers, refer to the next page.
Accuracy

$\mathbf{N i l}$	Basic type
\mathbf{H}	High-precision type

3 3 Motor mounting position

NiI	In-line
R	Right side parallel
L	Left side parallel

(4) Motor type

E	$\begin{array}{l}\text { Battery-less absolute } \\ \text { (Step motor 24 VDC) }\end{array}$

6 Stroke*1 ${ }^{\text {[mm] }}$		
Stroke	Note	
	Size	Applicable stroke
$\begin{aligned} & 50 \text { to } \\ & 800 \end{aligned}$	25	$\begin{array}{\|l} 50,100,150,200,250,300,350,400,450, \\ 500,550,600,650,700,750,800 \end{array}$
$\begin{aligned} & 50 \text { to } \\ & 1000 \end{aligned}$	32	$50,100,150,200,250,300,350,400,450$, $500,550,600,650,700,750,800,850,900$, 950, 1000
$\begin{aligned} & 150 \text { to } \\ & 1200 \end{aligned}$	40	$150,200,250,300,350,400,450,500,550$, $600,650,700,750,800,850,900,950$, 1000, 1100, 1200

7 Motor option

Nil	Without option
B	With lock

(11) Actuator cable type/length

Robotic cable			
Nil	None	R8	$8^{* 6}$
R1	1.5	RA	$10^{* 6}$
R3	3	RB	$15^{* 6}$
R5	5	RC	$20^{* 6}$

Items not listed are the same as those of the standard product.
For details, refer to the Web Catalog.

Mounting		Symbol	Type	Applicable interface
7	Screw mounting	Nil	Without accessory	-
8*7	DIN rail	S	Straight type communication plug connector	DeviceNet ${ }^{\text {TM }}$ CC-Link Ver. 1.10
- For single axis		T	T-branch type communication plug connector	
		1	I/O cable (1.5 m)	Parallel input (NPN) Parallel input (PNP)
		3	I/O cable (3 m)	
		5	I/O cable (5 m)	

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 If 2 or more are required, please order them separately. (Part no.: LEF-D-2-1 For details, refer to the Web Catalog.)
*3 Order auto switches separately. (For details, refer to the Web Catalog.)
*4 When "Nil" is selected, the product will not come with a built-in magnet for an auto switch, and so a mounting bracket cannot be secured. Be sure to select an appropriate model initially as the product cannot be changed to have auto switch compatibility after purchase.

\triangle Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LEF series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to page 45.
*5 For details on the mounting method, refer to the Web Catalog.
*6 Produced upon receipt of order
*7 The DIN rail is not included. Order it separately.
*8 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet™ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
*1 Check the actuator label for the model number. This number should match that of the controller.

* Refer to the Operation Manual for using the products.

Please download it via our website, https://www.smcworld.com

Type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type	Step data input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$
Features	EtherCAT ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input	Parallel I/O
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	31						37

LEFS Series

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model					LEFS25			LEFS32			LEFS40		
	Stroke [mm]*1				50 to 800			50 to 1000			150 to 1200		
	Work load	Horizontal			12	25	30	20	45	50	25	55	65
	[kg]*2	Vertical			0.5	7.5	15	4	10	20	2	2	23
	$\begin{gathered} \text { Speed*2 }^{* 2} \\ {[\mathrm{~mm} / \mathrm{s}]} \end{gathered}$	In-line	Stroke range	Up to 500	20 to 1100	12 to 750	6 to 400	24 to 1200	16 to 800	8 to 400	30 to 1200	20 to 850	10 to 300
				501 to 600	20 to 900	12 to 540	6 to 270	24 to 1200	16 to 800	8 to 400	30 to 1200	20 to 850	10 to 300
				601 to 700	20 to 630	12 to 420	6 to 230	24 to 930	16 to 620	8 to 310	30 to 1200	20 to 850	10 to 300
				701 to 800	20 to 550	12 to 330	6 to 180	24 to 750	16 to 500	8 to 250	30 to 1140	20 to 760	10 to 300
				801 to 900	-	-	-	24 to 610	16 to 410	8 to 200	30 to 930	20 to 620	10 to 300
				901 to 1000	-	-	-	24 to 500	16 to 340	8 to 170	30 to 780	20 to 520	10 to 250
				1001 to 1100	-	-	-	-	-	-	30 to 660	20 to 440	10 to 220
				1101 to 1200	-	-	-	-	-	-	30 to 570	20 to 380	10 to 190
		Parallel	Stroke range	Up to 500	20 to 900	12 to 600	6 to 300	24 to 800	16 to 650	8 to 325	30 to 750	20 to 550	10 to 300
				501 to 600	20 to 900	12 to 540	6 to 270	24 to 800	16 to 650	8 to 325	30 to 750	20 to 550	10 to 300
				601 to 700	20 to 630	12 to 420	6 to 230	24 to 800	16 to 620	8 to 310	30 to 750	20 to 550	10 to 300
				701 to 800	20 to 550	12 to 330	6 to 180	24 to 750	16 to 500	8 to 250	30 to 750	20 to 550	10 to 300
				801 to 900	-	-	-	24 to 610	16 to 410	8 to 200	30 to 750	20 to 550	10 to 300
				901 to 1000	-	-	-	24 to 500	16 to 340	8 to 170	30 to 750	20 to 520	10 to 250
				1001 to 1100	-	-	-	-	-	-	30 to 660	20 to 440	10 to 220
				1101 to 1200	-	-	-	-	-	-	30 to 570	20 to 380	10 to 190
	Max. acceleration/deceleration [mm/s ${ }^{\text {2 }}$]				3000								
	Positioning repeatability [mm]			Basic type	± 0.02								
				High-precision type	± 0.015 (Lead H: ± 0.02)								
	Lost motion [mm]*3			Basic type	0.1 or less								
				High-precision type	0.05 or less								
	Lead [mm]				20	12	6	24	16	8	30	20	10
	Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}{ }^{* 4}$				50/20								
	Actuation type				Ball screw (LEFS \square), Ball screw + Belt (LEFS $\square_{\mathrm{L}}^{\mathrm{R}}$)								
	Guide type				Linear guide								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]				5 to 40								
	Operating humidity range [\%RH]				90 or less (No condensation)								
	Motor size				$\square 42$			$\square 56.4$					
	Motor type				Battery-less absolute (Step motor 24 VDC)								
	Encoder				Battery-less absolute (4096 pulse/rotation)								
	Rated voltage [V]				24 VDC $\pm 10 \%$								
	Power consumption [W]*5				38			50			100		
	Standby power consumption when operating [W] ${ }^{* 6}$				16			44			43		
	Max. instantaneous power consumption [W] ${ }^{* 7}$				57			123			141		
	Type*8				Non-magnetizing lock								
	Holding force [N]				47	78	157	72	108	216	75	113	225
	Power consumption [W]*9				5			5			5		
	Rated voltage [V]				24 VDC $\pm 10 \%$								

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on pages 1 and 2
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
*3 A reference value for correcting an error in reciprocal operation
*4 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*5 The power consumption (including the controller) is for when the actuator is operating
*6 The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
*7 The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
*8 With lock only
*9 For an actuator with lock, add the power consumption for the lock.

Battery-less Absolute Encoder: Electric Actuator/Slider Type, Ball Screw Drive

Dimensions: Motor Parallel

LEFS32R

Motor mounting position: Lett side parallel

Motor mounting position: Right side parallel LEFS32R \square

$4 \times \mathrm{M} 6 \times 1$
thread depth 12.5 (Depth of counterbore 3)
Body mounting reference plane
(B dimension range)*1

L

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm) In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with the workpieces and facilities around the table.
*3 Position after return to origin
*4 [] for when the direction of return to origin has changed
Dimensions

Model	L	A	B	n	D	E
LEFS32 $\square \square \mathbf{- 5 0} \square$	245	56	180	4	-	-
LEFS32 $\square \square \mathbf{- 1 0 0} \square$	295	106	230	4	-	-
LEFS32 $\square \square \mathbf{- 1 5 0} \square$	345	156	280	4	-	-
LEFS32 $\square \square \mathbf{- 2 0 0} \square$	395	206	330	6	2	300
LEFS32 $\square \square \mathbf{- 2 5 0} \square$	445	256	380	6	2	300
LEFS32 $\square \square \mathbf{- 3 0 0} \square$	495	306	430	6	2	300
LEFS32 $\square \square \mathbf{- 3 5 0} \square$	545	356	480	8	3	450
LEFS32 $\square \square \mathbf{- 4 0 0} \square$	595	406	530	8	3	450
LEFS32 $\square \square \mathbf{- 4 5 0} \square$	645	456	580	8	3	450
LEFS32 $\square \square \mathbf{- 5 0 0} \square$	695	506	630	10	4	600

Model					[mm]	
	L	A	B	n	D	E
LEFS32 $\square \square$-550 \square	745	556	680	10	4	600
LEFS32 $\square \square$-600 \square	795	606	730	10	4	600
LEFS32 $\square \square$-650 \square	845	656	780	12	5	750
LEFS32 $\square \square$-700 \square	895	706	830	12	5	750
LEFS32 $\square \square$-750 \square	945	756	880	12	5	750
LEFS32 $\square \square$-800 \square	995	806	930	14	6	900
LEFS32 $\square \square$-850 \square	1045	856	980	14	6	900
LEFS32 $\square \square$-900 \square	1095	906	1030	14	6	900
LEFS32 $\square \square$-950 \square	1145	956	1080	16	7	1050
LEFS32 $\square \square$-1000 \square	1195	1006	1130	16	7	1050

LEFS Series

Dimensions: Motor Parallel

LEFS40R

Motor mounting position: Left side parallel
LEFS40L \square

Motor mounting position: Right side parallel LEFS40R \square

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm) In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with the workpieces and facilities around the table.
*3 Position after return to origin
*4 [] for when the direction of return to origin has changed

Dimensions						
Model	L	A	B	n	D	E
LEFS40 $\square \square$-150 \square	403.4	156	328	4	-	150
LEFS40 $\square \square$-200 \square	453.4	206	378	6	2	300
LEFS40 $\square \square$-250 \square	503.4	256	428	6	2	300
LEFS40 $\square \square$-300 \square	553.4	306	478	6	2	300
LEFS40 $\square \square$-350 \square	603.4	356	528	8	3	450
LEFS40 $\square \square$-400 \square	653.4	406	578	8	3	450
LEFS40 $\square \square$-450 \square	703.4	456	628	8	3	450
LEFS40 $\square \square$-500 \square	753.4	506	678	10	4	600
LEFS40 $\square \square$-550 \square	803.4	556	728	10	4	600
LEFS40 $\square \square-600 \square$	853.4	606	778	10		600

$\frac{\text { Dimensions }}{\text { Model }}$	[mm]					
	L	A	B	n	D	E
LEFS40 $\square \square-650 \square$	903.4	656	828	12	5	750
LEFS40 $\square \square$-700 \square	953.4	706	878	12	5	750
LEFS40 $\square \square-750 \square$	1003.4	756	928	12	5	750
LEFS40 $\square \square$-800 \square	1053.4	806	978	14	6	900
LEFS40 $\square \square$-850 \square	1103.4	856	1028	14	6	900
LEFS40 $\square \square$-900 \square	1153.4	906	1078	14	6	900
LEFS40 $\square \square$-950 \square	1203.4	956	1128	16	7	1050
LEFS40 $\square \square$-1000 \square	1253.4	1006	1178	16	7	1050
LEFS40 $\square \square$-1100 \square	1353.4	1106	1278	18	8	1200
LEFS40 $\square \square$-1200 \square	1453.4	1206	1378	18	8	1200

For details on controllers, refer to the next page.

\section*{| 1 Size |
| :---: |
| 25 |
| 32 |}

(4) Stroke ${ }^{* 1}$ [mm]

Stroke	Note	
	Size	Applicable stroke
$\mathbf{3 0 0}$ to $\mathbf{2 0 0 0}$	$\mathbf{2 5}$	$300,500,600,700,800,900,1000$, $1200,1500,1800,2000$
$\mathbf{3 0 0}$ to $\mathbf{2 0 0 0}$	$\mathbf{3 2}$	$300,500,600,700,800,900,1000$, $1200,1500,1800,2000$

5 Motor option	
Nil	Without option
\mathbf{B}	With lock

(9) Actuator cable type/length

Robotic cable	$[\mathrm{m}]$		
Nil	None	R8	$8^{* 6}$
R1	1.5	RA	$10^{* 6}$
R3	3	RB	$15^{* 6}$
R5	5	RC	$20^{* 6}$

The belt drive actuator cannot be used for vertical applications.

Type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type	Step data input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$
Features	EtherCAT® ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input	Parallel I/O
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	31						37

LEY Series
 Model Selection

Speed-Work Load Graph (Guide)
 For Battery-less Absolute (Step Motor 24 VDC)

Items not listed are the same as those of the standard product. For details, refer to the Web Catalog.

Horizontal
LEY25 \square E

LEY32 $\square E$
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 $\square E$
$7 \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical
LEY25 \square E

LEY32 \square E

LEY40■E

Model Selection LEY Series

Force Conversion Graph（Guide）

Items not listed are the same as those of the standard product． For details，refer to the Web Catalog
＜Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed＞

Model	Lead	Pushing speed ［mm／s］	Pushing force （Setting input value）
LEY25 $\square \mathbf{E}$	A／B／C	21 to 35	40 to 50%
LEY32 $\square \mathbf{E}$	A	24 to 30	50 to 70%
	B／C	21 to 30	
	A	24 to 30	21 to 30

＜Set Values for Vertical Upward Transfer Pushing Operations＞

Model	LEY25 $\square \mathbf{E}$			LEY32 $\square \mathbf{E}$			LEY40 $\square \mathbf{E}$			
Lead	A	B	C	A	B	C	A	B	C	
Work load $[\mathrm{kg}]$	2.5	5	10	4.5	9	18	7	14	28	
Pushing force	50%			70%				65%		

Battery-less Absolute Encoder:
 Electric Actuator/
 Rod Type
 LEY Series LEY25,32,40

[^0]
Battery-less Absolute Encoder: Electric Actuator/Rod Type

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 When "With lock/motor cover" is selected for the top mounting type, the motor body will stick out from the end of the body for size 40 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.
*3 The mounting bracket is shipped together with the product but does not come assembled.
*4 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range. -LEY25: 200 or less . LEY32/40: 100 or less
*5 For the mounting of the double clevis type, use the actuator within the

© Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to page 45 .
following stroke range.
. LEY25: 200 or less . LEY32/40: 200 or less
*6 The rod flange type is not available for the LEY40 with a 30 mm stroke and motor option "With lock/motor cover."
*7 The head flange type is not available for the LEY32/40.
*8 Produced upon receipt of order
*9 The DIN rail is not included. Order it separately.
*10 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\text {TM }}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

*1 Check the actuator label for the model number. This number should match that of the controller.

Type	EtherCAT® ${ }^{\text {® }}$ direct input type	EtherNet/IPTm direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {™ }}$ direct input type	IO-Link direct input type	CC-Link direct input type	Step data input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$
Features	EtherCAT ${ }^{\circledR}$ direct input	EtherNet//PTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input	Parallel I/O
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	31						37

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model				LEY25			LEY32			LEY40		
Actuator specifications	Work	Hoiz	($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$)	20	40	60	30	45	60	50	60	80
	load	rizonta	($\left.2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	30	55	70	40	60	80	60	70	90
	[kg]*1	Vertical	(3000 [mm/s $\left.{ }^{2}\right]$)	8	16	30	11	22	43	13	27	53
	Pushing force [N$]^{* 2 * 3 * 4}$			63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed [mm/s]*4			18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 300	6 to 150
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3000								
	Pushing speed [mm/s]*5			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02								
	Lost motion [mm]*6			0.1 or less								
	Screw lead [mm]			12	6	3	16	8	4	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$			50/20								
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)								
	Guide type			Sliding bushing (Piston rod)								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40								
	Operating humidity range [\%RH]			90 or less (No condensation)								
	Motor size			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery-less absolute (Step motor 24 VDC)								
	Encoder			Battery-less absolute (4096 pulse/rotation)								
	Rated voltage [V]			24 VDC $\pm 10 \%$								
	Power consumption [W]*8			40			50			50		
	Standby power consumption when operating [W] ${ }^{* 9}$			15			48			48		
	Max. instantaneous power consumption [W] ${ }^{* 10}$			48			104			106		
- ${ }_{0}^{\circ}$	Type*11			Non-magnetizing lock								
或	Holding force [N]			78	157	294	108	216	421	127	265	519
皆:	Power consumption [W]*12			5			5			5		
\%	Rated voltage [V]			24 VDC $\pm 10 \%$								

*1 Horizontal: The maximum value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check "Model Selection" on page 11.
Vertical: Speed changes according to the work load. Check "Model Selection" on page 11
The values shown in () are the acceleration/deceleration.
Set these values to be 3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$ or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The pushing force values for LEY25 \square E is 30% to 50%, for LEY32 \square E is 30% to 70%, and for LEY40 $\square E$ is 35% to 65%.
The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" in the Web Catalog
*4 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*5 The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
*6 A reference value for correcting an error in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 The power consumption (including the controller) is for when the actuator is operating.
*9 The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation
*10 The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
*11 With lock only
*12 For an actuator with lock, add the power consumption for the lock.

Battery-less Absolute Encoder: Electric Actuator/Rod Type

Dimensions

Motor top mounting type

With motor cover: $\begin{array}{rl}25 \\ 40 & \mathbf{A} \\ 42 \\ \mathbf{C}\end{array} \square \mathbf{C}$ With lock/motor cover: LEY | 25 |
| :---: |
| 40 |
| 40 |\square

In-line motor type

25 A
With motor cover: LEY32D $\square \mathrm{B}-\square \mathrm{C}$

Size	Stroke range	A	T2	X2	L	CV
25	100st or less	198.5	7.5	68.5	46	54.5
	101st or more, 400st or less	223.5				
32	100st or less	220	8.5	73.5	60	69.5
	101st or more, 500st or less	250				
40	100st or less	242	8.5	95.5	60	69.5
	101st or more, 500st or less	272				

25 A
 With lock/motor cover: LEY32D $\square \mathrm{B}-\square$ W 40

Size	Stroke range	A	T2	X2	L	CV
25	100st or less	239	7.5	109	46	54.4
	101st or more, 400st or less	264				
32	100st or less	263	8.5	116.5	60	69.5
	101st or more, 500st or less	293				
40	100st or less	285	8.5	138.5	60	69.5
	101st or more, 500st or less	315				

LEYG Series
 Model Selection

Speed-Work Load Graph (Guide)
 For Battery-less Absolute (Step Motor 24 VDC)

Items not listed are the same as those of the standard product For details, refer to the Web Catalog.

Horizontal

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathbf{E} \quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathbf{E} \quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40 ${ }_{\text {L }} \square \mathrm{E}$ $\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical
LEYG25 ${ }_{\text {M }} \square \mathrm{E}$

LEYG32M ${ }^{\text {M }} \square E$

LEYG40 ${ }_{\text {L }} \square \mathrm{E}$

Model Selection LEYG Series

Force Conversion Graph（Guide）

Items not listed are the same as those of the standard product． For details，refer to the Web Catalog．
＜Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed＞

Model	Lead	Pushing speed ［mm／s］	Pushing force （Setting input value）
LEYG25ㄴㄴ $\square \mathbf{E}$	A／B／C	21 to 35	40 to 50%
LEYG32			
	A	24 to 30	50 to 70%
LEYG40M $\square \mathbf{E}$	B／C	21 to 30	
	A	24 to 30	21 to 30

＜Set Values for Vertical Upward Transfer Pushing Operations＞

Model	LEYG25 ${ }_{\text {L }} \square \mathrm{E}$			LEYG32M $\square \mathrm{E}$			LEYG40 ${ }_{\text {L }} \square \mathrm{E}$		
Lead	A	B	C	A	B	C	A	B	C
Work load［kg］	1.5	4	9	2.5	7	16	5	12	26
Pushing force	50\％			70\％			65\％		

Battery-less Absolute Encoder:
 Electric Actuator/
 Guide Rod Type
 LEYG Series LEYG25, 32,40

For details on auto switches, refer to the Web Catalog.

[^1][^2]
Battery-less Absolute Encoder: Electric Actuator/Guide Rod Type LEYG Series

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to page 45
strokes of 30 mm or less. Check for interference with workpieces before selecting a model.
*5 Only available for size 25, 32, and 40 sliding bearings (Refer to "Construction" in the Web Catalog.)
*6 Produced upon receipt of order
*7 The DIN rail is not included. Order it separately.
*8 Select "Nil" for anything other than DeviceNet™, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet™ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
*1 Check the actuator label for the model number. This number should match that of the controller.

* Refer to the Operation Manual for using the products.

Please download it via our website, https://www.smcworld.com

Communication plug connector, I/O cable*8

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet $^{\text {TM }}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

LEYG Series

Specifications

Battery－less Absolute（Step Motor 24 VDC）

Model				LEYG25 ${ }_{\text {L }}$			LEYG32 ${ }_{\text {L }}$			LEYG40 ${ }_{\text {L }}$		
Actuator specifications	Work load $[\mathrm{kg}]^{* 1}$	Horiz	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	20	40	60	30	45	60	50	60	80
		Horizontal	Acceleration／Deceleration at $2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	30	55	70	40	60	80	60	70	90
		Vertical	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	7	15	29	9	20	41	11	25	51
	Pushing force［ N$]^{* 2 * 3 * 4}$			63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed［mm／s］${ }^{* 4}$			18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 300	6 to 150
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］							3000				
	Pushing speed［mm／s］＊5				35 or less			30 or less			30 or less	
	Positioning repeatability［mm］							± 0.02				
	Lost motion［mm］＊6							0.1 or less				
	Screw lead［mm］			12	6	3	16	8	4	16	8	4
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 7}$							50／20				
	Actuation type			Ball screw＋Belt（LEYGロロ），Ball screw（LEYGロपD）								
	Guide type			Sliding bearing（LEYG $\square \mathrm{M}$ ），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）								
	Operating temp．range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40								
	Operating humidity range［\％RH］			90 or less（No condensation）								
	Motor size			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery－less absolute（Step motor 24 VDC）								
	Encoder			Battery－less absolute（4096 pulse／rotation）								
	Rated voltage［V］			24 VDC $\pm 10 \%$								
	Power consumption［W］＊8			40			50			50		
	Standby power consumption when operating［W］${ }^{* 9}$			15			48			48		
	Max．instantaneous power consumption［W］＊10			48			104			106		
	Type＊11			Non－magnetizing lock								
	Holding force［N］			78	157	294	108	216	421	127	265	519
	Power consumption［W］＊12			5			5			5		
	Rated voltage［V］			24 VDC $\pm 10 \%$								

＊1 Horizontal：An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load and transfer speed change according to the condition of the external guide．Also，speed changes according to the work load．Check＂Model Selection＂on page 17.
Vertical：Speed changes according to the work load．Check＂Model Selection＂on page 17.
Set the acceleration／deceleration values to be 3000 ［ $\mathrm{mm} / \mathrm{s}^{2}$ ］or less．
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
$* 3$ The pushing force values for LEYG25 $\square \square$ E is 30% to 50% ，for LEYG32 $\square \square E$ is 30% to 70% ，and for LEYG40 $\square \square E$ is 35% to 65% ．
The pushing force values change according to the duty ratio and pushing speed．Check＂Model Selection＂in the Web Catalog．
＊4 The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
When［M：Sliding bearing］is selected，the maximum speed of lead［A］is $400 \mathrm{~mm} / \mathrm{s}$（at no－load，horizontal mounting）．
The speed is also restricted with a horizontal／moment load．Refer to＂Model Selection＂in the Web Catalog．
＊5 The allowable speed for the pushing operation
＊6 A reference value for correcting an error in reciprocal operation
＊7 Impact resistance：No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊8 The power consumption（including the controller）is for when the actuator is operating．
＊9 The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation． Except during the pushing operation
＊10 The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
＊11 With lock only
＊12 For an actuator with lock，add the power consumption for the lock．

Battery－less Absolute Encoder： Electric Actuator／Guide Rod Type LEYG Series

Dimensions

Motor top mounting type

In－line motor type

With motor cover：LEYG32 $\square \mathrm{D} \square \mathrm{B}-\square \mathrm{C}$ 40

Size	Stroke range	A	T2	X2	L	H	CV
25	100st or less	209.5	7.5	68.5	46	61.3	54.5
	101st or more，300st or less	234.5					
32	100st or less	232	8.5	73.5	60	76.8	69.5
	101st or more，300st or less	262					
40	100st or less	254	8.5	95.5	60	76.8	69.5
	101st or more，300st or less	284					

25 A
With lock／motor cover：LEYG32D \square B－\square W

Size	Stroke range	A	T2	X2	L	H	CV
25	100st or less	250	7.5	109	46	61.3	54.4
	101st or more，300st or less	275					
32	100st or less	275	8.5	116.5	60	76.8	69.5
	101st or more，300st or less	305					
40	100st or less	297	8.5	138.5	60	76.8	69.5
	101st or more，300st or less	327					

The connector size and motor height are different．Dimensions not listed are the same as those of the standard product．

Battery-less Absolute Encoder:
 Electric Slide Table/
 Compact Type
 LES Series Les25

$\mathbf{4}$ Lead [mm]
$\mathbf{\| J}$
\mathbf{K}

5 Stroke [mm]

Stroke	Applicable stroke
$\mathbf{3 0}$ to $\mathbf{1 5 0}$	$30^{* 1}, 50,75,100,125,150$

6 Motor option

Nil	Without option
B	With lock

8 Mounting*3

Symbol	Mounting	R type L type	D type
$\mathbf{N i l}$	Without side holder	\bullet	\bullet
\mathbf{H}	With side holder (4 pcs.)	-	\bullet

[^3]9 Actuator cable type/length
Robotic cable
Robotic cable

Nil	None	R8	$8^{* 4}$
R1	1.5	RA	$10^{* 4}$
R3	3	RB	$15^{* 4}$
R5	5	RC	$20^{* 4}$

For details on controllers, refer to the next page.

\triangle Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LES series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to page 45.
*1 R/L type with lock is not available.
*2 For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
*3 For details, refer to the Web Catalog.
*4 Produced upon receipt of order
\qquad

5 The DIN rail is not included. Order it separately.
*6 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\text {TM }}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.
Communication plug connector, I / O cable*6

Symbol	Type	Applicable interface
$\mathbf{N i l}$	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\text {TM }}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
*1 Check the actuator label for the model number. This number should match that of the controller.

* Refer to the Operation Manual for using the products.

Please download it via our website, https://www.smcworld.com

Type	EtherCAT® ${ }^{\text {® }}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type	Step data input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$
Features	EtherCAT® direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input	Parallel I/O
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	31						37

Battery-less Absolute Encoder:
 Electric Slide Table/ High Rigidity Type
 LESH Series Lesh25

For details on controllers refer to the next page.

4 Lead [mm]
\mathbf{J} 16 \mathbf{K} 8

\qquad
6 Motor option

Nil	Without option
B	With lock

B

7 Body option	
Nil	Without option
S	Dust-protected*1

(9) Actuator cable type/length
Robotic cable

Nil	None	R8	$8^{* 3}$
R1	1.5	RA	$10 * 3$
R3	3	RB	$15 * 3$
R5	5	RC	$20 * 3$

Battery-less Absolute Encoder: Electric Slide Table/High Rigidity Type

*1 For R/L type (IP5X equivalent), a scraper is mounted on the rod cover,
*4 The DIN rail is not included. Order it separately. and gaskets are mounted on both the end covers. For D type, a
*5 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}, \mathrm{CC}$-Link, or parallel input.
For details, ren
Select "Nil," "S," or "T" for DeviceNet™ or CC-Link. Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LES series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to page 45.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

*1 Check the actuator label for the model number. This number should match that of the controller.

* Refer to the Operation Manual for using the products.

Please download it via our website, https://www.smcworld.com

Type	EtherCAT® ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type	Step data input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1	$\begin{aligned} & \hline \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$
Features	EtherCAT ${ }^{\circledR}$ direct input	EtherNet//PTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input	Parallel I/O
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	31						37

Battery-less Absolute Encoder: Electric Gripper 2-Finger Type

C $\in \mathrm{c} 9 \mathrm{~N}_{\mathrm{us}}$

For details on controllers, refer to the next page.

(3) Lead
K \quad Basic
(4) 2-finger type
$\mathbf{5}$ Stroke $[\mathrm{mm}]$

Stroke/both sides	Size	
Basic		
$\mathbf{3 2}$	$\mathbf{6 4}$	32
$\mathbf{4 0}$	$\mathbf{8 0}$	40

Motor cable entry

(7) Actuator cable type/length

Robotic cable

Nil	None	R8	$8^{* 1}$
R1	1.5	RA	$10^{* 1}$
R3	3	RB	$15^{* 1}$
R5	5	RC	$20^{* 1}$

Battery-less Absolute Encoder: Electric Gripper 2-Finger Type

- Poll
*2 The DIN rail is not included. Order it separately.
*3 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet™ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to page 45.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
*1 Check the actuator label for the model number. This number should match that of the controller.

* Refer to the Operation Manual for using the products.

Please download it via our website, https://www.smcworld.com

| | EtherCAT®
 direct input
 type | EtherNet/IPTM
 direct input
 type | PROFINET
 direct input
 type | DeviceNet ${ }^{\text {TM }}$
 direct input
 type | IO-Link
 direct input
 type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Type | | | | | |

Battery-less Absolute Encoder: Electric Rotary Table

For details on controllers, refer to the next page.

1 Table accuracy		(2) Size	3 Motor type		(4) Max. rotating torque [$\mathrm{N} \cdot \mathrm{m}$]		
Nil	Basic type	50	E	Battery-less absolute	K	High torque	10
H	High-precision type		E	(Step motor 24 VDC)	J	Basic	6.6

5 Rotation angle [${ }^{\circ}$]

$\mathbf{N i l}$	320
$\mathbf{2}$	External stopper: 180
$\mathbf{3}$	External stopper: 90

6 Motor cable entry

7 Actuator cable type/length
Robotic cable

Nil	None	R8	$8^{* 1}$
R1	1.5	RA	$10^{* 1}$
R3	3	RB	$15^{* 1}$
R5	5	RC	$20^{* 1}$

[^4]
Battery－less Absolute Encoder：
 Electric Rotary Table

Communication plug connector，I／O cable＊3

Symbol	Type	Applicable interface
$\mathbf{N i l}$	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\text {TM }}$
\mathbf{T}	T－branch type communication plug connector	CC－Link Ver． 1.10
$\mathbf{1}$	I／O cable $(1.5 \mathrm{~m})$	Parallel input（NPN）
$\mathbf{3}$	I／O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I／O cable $(5 \mathrm{~m})$	

＊1 Produced upon receipt of order
＊2 The DIN rail is not included．Order it separately．
＊3 Select＂Nil＂for anything other than DeviceNet ${ }^{\text {TM }}$ ，CC－Link，or parallel input．
Select＂Nil，＂＂S，＂or＂T＂for DeviceNet™ or CC－Link．
Select＂Nil，＂＂1，＂＂3，＂or＂ 5 ＂for parallel input．

\triangle Caution

［CE－compliant products］
EMC compliance was tested by combining the electric actuator LER series and the controller JXC series．
The EMC depends on the configuration of the customer＇s control panel and the relationship with other electrical equipment and wiring．Therefore， compliance with the EMC directive cannot be certified for SMC components incorporated into the customer＇s equipment under actual operating conditions．As a result，it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole．
［Precautions relating to differences in controller versions］
When the JXC series is to be used in combination with the battery－less absolute encoder，use a controller that is version V3．4 or S3．4 or higher． For details，refer to page 45.

The actuator and controller are sold as a package．
Confirm that the combination of the controller and actuator is correct．
＜Check the following before use．＞
＊1 Check the actuator label for the model number． This number should match that of the controller．

＊Refer to the Operation Manual for using the products．
Please download it via our website，https：／／www．smcworld．com

Type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet／IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO－Link direct input type	CC－Link direct input type	Step data input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1	JXC51 JXC61
Features	EtherCAT ${ }^{\circledR}$ direct input	EtherNet／IP ${ }^{\text {TM }}$ direct input	PROFINET direct input	DeviceNet ${ }^{T M}$ direct input	IO－Link direct input	CC－Link direct input	Parallel I／O
Compatible motor	Battery－less absolute （Step motor 24 VDC）						
Max．number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	31						37

Step Motor Controller JXCE1/91/P1/D1/L1/M1 Series

How to Order

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and actuator is correct.
(1) Check the actuator label for the model number. This number should match that of the controller.

* Refer to the operation manual for using the products. Please download it via our website, https://www.smcworld.com

Precautions for blank controllers (JXC $\square 1 \square \square$-BC-E)

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXC-BCW) for data writing.

- Please download the dedicated software (JXC-BCW) via our website.
- Order the controller setting kit (JXC-W2A-C) separately to use this software.

SMC website: https://www.smcworld.com

Step Motor Controller JXCE1／91／P1／D1／L1／M1 Series

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Network			EtherCAT ${ }^{\text {® }}$	EtherNet／IP ${ }^{\text {TM }}$	PROFINET	DeviceNet ${ }^{\text {TM }}$	IO－Link	CC－Link
Compatible motor			Step motor（Servo／24 VDC）					
Power supply			Power voltage： 24 VDC $\pm 10 \%$					
Current consumption（Controller）			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less	100 mA or less
Compatible encoder			Battery－less absolute（4096 pulse／rotation），Incremental A／B phase（800 pulse／rotation）					Battery－less absolute
		Protocol	EtherCAT ${ }^{\text {®＊2 }}$	EtherNet／IP ${ }^{\text {TM }}$＊ 2	PROFINET＊2	DeviceNet ${ }^{\text {TM }}$	IO－Link	CC－Link
	Applicable system	Version＊1	Conformance Test Record V．1．2．6	Volume 1 （Edition 3．14） Volume 2 （Edition 1．15）	Specification Version 2.32	Volume 1 （Edition 3．14） Volume 3 （Edition 1．13）	$\begin{aligned} & \text { Version } 1.1 \\ & \text { Port Class A } \end{aligned}$	Ver． 1.10
	Communication speed		$100 \mathrm{Mbps}^{* 2}$	$\begin{aligned} & \text { 10/100 Mbps*2 } \\ & \text { (Automatic } \\ & \text { negotiation) } \end{aligned}$	$100 \mathrm{Mbps}^{* 2}$	125／250／500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ \text { (COM3) } \end{gathered}$	156 kbps， 625 kbps ， 2．5 Mbps， 5 Mbps ， 10 Mbps
	Configuration file＊3		ESI file	EDS file	GSDML file	EDS file	IODD file	CSP＋
	I／O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4，10， 20 bytes Output 4，12，20， 36 bytes	Input 14 bytes Output 22 bytes	1 station， 2 stations， 4 stations
	Terminating resistor		Not included					
Memory			EEPROM					
LED indicator			PWR，RUN，ALM，ERR	PWR，ALM，MS，NS	PWR，ALM，SF，BF	PWR，ALM，MS，NS	PWR，ALM，COM	PWR，ALM，L ERR，L RUN
Cable length［m］			Actuator cable： 20 or less					
Cooling system			Natural air cooling					
Operating temperature range［ ${ }^{\mathrm{C}}$ ］			0 to 55 （No freezing）＊4					
Operating humidity range［\％RH］			90 or less（No condensation）					
Insulation resistance［M C ］			Between all external terminals and the case： 50 （500 VDC）					
Weight［g］			220 （Screw mounting） 240 （DIN rail mounting）	210 （Screw mounting） 230 （DIN rail mounting）	220 （Screw mounting） 240 （DIN rail mounting）	210 （Screw mounting） 230 （DIN rail mounting）	190 （Screw mounting） 210 （DIN rail mounting）	170 （Screw mounting） 190 （DIN rail mounting）

＊1 Please note that versions are subject to change．
＊2 Use a shielded communication cable with CAT5 or higher for the PROFINET，EtherNet／IP ${ }^{\text {TM }}$ ，and EtherCAT ${ }^{\circledR}$ ．
＊3 The files can be downloaded from the SMC website．
＊4 For the LEY40 and LEYG40 series，if the vertical work load is greater than the weight listed below，use the controller at an ambient temperature of $40^{\circ} \mathrm{C}$ or less．

Series	Weight $[\mathrm{kg}]$	Series	Weight $[\mathrm{kg}]$
LEY40 \square EA	9	LEYG40 \square EA	7
LEY40 \square EB	19	LEYG40 \square EB	17
LEY40 \square EC	38	LEYG40 \square EC	36

－Trademark

EtherNet／IPTM is a trademark of ODVA．
DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA．
EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology，licensed by Beckhoff Automation $\mathrm{GmbH}, \mathrm{Germany}$ ．

JXCE1/91/P1/D1/L1/M1 Series

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol, the changing of each parameter can be performed in real time via numerical data defined operation.

* Numerical values other than "Moving force," "Area 1," and "Area 2" can be used to perform operation under numerical instructions from JXCL1.
<Application example> Movement between 2 points

No.	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

<Step no. defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 to input the DRIVE signal.
Sequence 4: Specify step data No. 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal.

<Numerical data defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 and turn ON the input instruction flag (position). Input 10 in the target position. Subsequently the start flag turns ON. Sequence 4: Turn ON step data No. 0 and the input instruction flag (position) to change the target position to 100 while the start flag is ON.

The same operation can be performed with any operation command.

JXCE1

JXCP1

JXC91

JXCE1/JXC91

JXCP1/JXCD1

JXCE1/91/P1/D1/L1/M1 Series

Dimensions

JXCL1

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Options

Communication cable for controller setting
－Controller setting software
－USB driver
Download from SMC＇s website：
https：／／www．smcworld．com
Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows ${ }^{\circledR} 8.1$ ，Windows ${ }^{\circledR} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

＊Windows ${ }^{\circledR 7}$ ，Windows ${ }^{\circledR 8} 8.1$ ，and Windows ${ }^{\circledR 10}$ are registered trademarks of Microsoft Corporation in the United States．
（1）Communication cable JXC－W2A－C

＊It can be connected to the controller directly．
（2）USB cable LEC－W2－U

DIN rail mounting adapter LEC－3－D0
＊With 2 mounting screws
This should be used when the DIN rail mounting adapter is mounted onto a screw mounting type controller afterward．

DIN rail AXT100－DR－

＊For \square ，enter a number from the No．line in the table on page 35. Refer to the dimension drawings on page 35 for the mounting dimensions．

Power supply plug JXC－CPW

＊The power supply plug is an accessory．

（6）（5）（4）
（3）（2）（1）
（1）C24V
（4） OV
（2）M24V
（5）N．C．
（3）EMG
（6）LK RLS
Power supply plug

Terminal name	Function	Details
OV	Common supply（－）	M24V terminal／C24V terminal／EMG terminal／ LK RLS terminal are common（－）．
M24V	Motor power supply（＋）	Motor power supply（＋）of the controller
C24V	Control power supply（＋）	Control power supply（＋）of the controller
EMG	Stop（＋）	Connection terminal of the external stop circuit
LK RLS	Lock release（＋）	Connection terminal of the lock release switch

Communication plug connector

For DeviceNet ${ }^{\text {TM }}$
Straight type T－branch type Communication plug
JXC－CD－S JXC－CD－T

Connector for DeviceNet ${ }^{\text {TM }}$
Terminal name
V＋
Power supply（ $(+$ ）for DeviceNet
CAN＿H
Communication wire（High）
Drain
CAN＿L
Grounding wire／Shielded wire
V－

For IO－Link
Straight type
JXC－CL－S
＊The communication plug connector for IO－Link is an accessory．

Communication plug connector for IO－Link

Terminal no．Termina name	Details	
1	L＋	+24 V
2	NC	N／A
3	$\mathrm{~L}-$	0 V
4	C / Q	IO－Link signal

For CC－Link

Straight type T－branch type Communication plug LEC－CMJ－S LEC－CMJ－T connector for CC－Link

Conversion cable P5062－5（Cable length： 300 mm）

[^5]
Controller (Step Data Input Type) JXC51/61 Series

Parallel I/O type

5	NPN
6	PNP

2 Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 1}$	DIN rail

*1 The DIN rail is not included.
Order it separately
(3) I/O cable length [m]

$\mathbf{N i l}$	None
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5

Actuator part number

Without cable specifications and actuator options Example: Enter "LEFS25EB-100" for the LEFS25EB 100B-R1 $\square \square$

BC-E Blank controller*1
*1 Requires dedicated software (JXC-BCW)

The controller is sold as single unit after the

 compatible actuator is set.Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, https://www.smcworld.com

Precautions for blank controllers (JXC $\square 1 \square \square-\mathrm{BC}-\mathrm{E}$)

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXCBCW) for data writing.

- Please download the dedicated software (JXC-BCW) via our website.
- Order the communication cable for controller setting (JXC-W2A-C) separately to use this software.

> SMC website
https://www.smcworld.com

Specifications

Model	JXC51 JXC61
Compatible motor	Step motor (Servo/24 VDC)
Power supply	Power voltage: 24 VDC $\pm 10 \%$
Current consumption (Controller)	100 mA or less
Compatible encoder	Battery-less absolute (4096 pulse/rotation)
Parallel input	11 inputs (Photo-coupler isolation)
Parallel output	13 outputs (Photo-coupler isolation)
Serial communication	RS485 (Only for the LEC-T1 and JXC-W2)
Memory	EEPROM
LED indicator	PWR, ALM
Cable length [m]	Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	0 to $55^{\circ} \mathrm{C}^{* 1}$
Operating humidity range [\%RH]	Between all external terminals and the case: 50 (50 VDC)
Insulation resistance $[\mathrm{M} \Omega]$	150 (Screw mounting), 170 (DIN rail mounting)
Weight [g]	

*1 For the LEY40 and LEYG40 series, if the vertical work load is greater than the weight listed below, use the controller at an ambient temperature of $40^{\circ} \mathrm{C}$ or less.

Series	Weight $[\mathrm{kg}]$	Series	Weight $[\mathrm{kg}]$
LEY40 \square EA	9	LEYG40 \square EA	7
LEY40 \square EB	19	LEYG40 \square EB	17
LEY40 \square EC	38	LEYG40 \square EC	36

How to Mount

a）Screw mounting（JXC $\square 1 \square \square-\square$ ） （Installation with two M4 screws）

b）DIN rail mounting（JXC $\square 1 \square \square \mathrm{D}-\square$ ） （Installation with the DIN rail）

DIN rail is locked．

＊When size 25 or more of the LE series are used，the space between the controllers should be 10 mm or more．

DIN rail
 AXT100－DR－\square

＊For \square ，enter a number from the No．line in the table below．
Refer to the dimension drawings on page 39 for the mounting dimensions．

L Dimensions［mm］

No．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No．	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC－DO（with 2 mounting screws）

This should be used when the DIN rail mounting adapter is mounted onto a screw mounting type controller afterward．

Wiring Example 1

Parallel I／O Connector＊When you connect a PLC to the parallel I／O connector，use the I／O cable（LEC－CN5－\square ）． ＊The wiring changes depending on the type of parallel I／O（NPN or PNP）．

Wiring diagram

JXC51
$\square \square-\square$（NPN）
Power supply 24 VDC
for I／O signal

CN5		for I／O signa	
COM＋	A1		
COM－	A2		
INO	A3		
IN1	A4		
IN2	A5		
IN3	A6		
IN4	A7		
IN5	A8		
SETUP	A9		
HOLD	A10		
DRIVE	A11		
RESET	A12		
SVON	A13		
OUTO	B1		
OUT1	B2		，
OUT2	B3		－
OUT3	B4		，
OUT4	B5		，
OUT5	B6	，	，
BUSY	B7		，
AREA	B8	－	，
SETON	B9	，	，
INP	B10	d	，
SVRE	B11	d	－
＊ESTOP	B12	－	
＊ALARM	B13		

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input／output signal
COM－	Connects the power supply 0 V for input／output signal
IN0 to IN5	Step data specified bit no． （Input is instructed by combining IN0 to 5．）
SETUP	Instruction to return to origin
HOLD	Temporarily stops operation
DRIVE	Instruction to drive
RESET	Resets alarm and interrupts operation
SVON	Servo ON instruction

JXC61 $\square \square-\square$（PNP）

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no．during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached （Turns on when the positioning or pushing is completed．）
SVRE	Outputs when servo is on
＊ESTOP＊1	OFF when EMG stop is instructed
＊ALARM＊1	OFF when alarm is generated

＊1 Signal of negative－logic circuit（N．C．）

葉

๖

JXC51/61 Series

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

© : Need to be set.

O: Need to be set. Step Data (Positioning) : Need to be adjusted as required. -: Setting is not required.		
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the target position
\bigcirc	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Pushing)		© : Need to be set. O : Need to be adjusted as required.
Necessity	Item	Details
\bigcirc	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
0	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
\bigcirc	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the operation manual for the electric actuator.
\bigcirc	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and workpieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the operation manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuits.

* "OUT" is output when "DRIVE" is changed from ON to OFF.

Refer to the operation manual for details on the controller for the LEM series. (When power supply is applied, "DRIVE" or "RESET" is turned ON or "*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

[^6]

* "*ALARM" is expressed as a negative-logic circuit.

JXC51/61 Series

Options

Power supply plug JXC-CPW

* The power supply plug is an accessory.
<Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm

(6) (5) (4)
(3) (2) (1)
(1) C24V
(4) $O V$
(2) M24V
(5) N.C.
(3) EmG
(6) LK RLS

Power supply plug terminal

Terminal name	Function	Details
OV	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

Communication cable for controller setting

- Controller setting software
- USB driver

Download from SMC's website:
https://www.smcworld.com

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows $^{\circledR} 8.1$, Windows ${ }^{\circledR} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR} 7$, Windows ${ }^{\circledR 8} 8.1$, and Windows ${ }^{\circledR 10}$ are registered trademarks of Microsoft Corporation in the United States.
(1) Communication cable JXC-W2A-C

* It can be connected to the controller directly.

2) USB cable LEC-W2-U

Conversion cable P5062-5 (Cable length: $\mathbf{3 0 0} \mathbf{~ m m}$)

* To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) to the controller, a conversion cable is required.

I/O cable

Conductor size: AWG28

Weight

Product no.	Weight [g]
LEC-CN5-1	170
LEC-CN5-3	320
LEC-CN5-5	520

Connector pin no.	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Gray	\square	Black
A8	Gray	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	■ ■	Black
A12	Light brown	■	Red
A13	Yellow	■ ■	Black

Connector pin no.	Insulation color	Dot mark	Dot color
B1	Yellow	■ ■	Red
B2	Light green	■	Black
B3	Light green	■ ■	Red
B4	Gray	■ ■	Black
B5	Gray	■ ■	Red
B6	White	■ ■	Black
B7	White	■ ■	Red
B8	Light brown	■■■	Black
B9	Light brown	$\square \square$	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-		Shield	

step Motor Controler JXCE1／91／P1／D1／L1／M1 Series
 Controller（Step Data Input Type）JXC51／61 Series

Options：Actuator Cable

［Robotic cable for battery－less absolute（Step motor 24 VDC）］
LE $-C E-\square \mathbf{1}$
Cable length（L）［m］

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

＊1 Produced upon receipt of order

Weight

Product no．	Weight［g］	Note
LE－CE－1	190	Robotic cable
LE－CE－3	360	
LE－CE－5	570	
LE－CE－8	900	
LE－CE－A	1120	
LE－CE－B	1680	
LE－CE－C	2210	

Signal	Connector A terminal no．		Cable color	Connector C terminal no．
A	B－1		Brown	2
$\overline{\mathrm{A}}$	A－1		Red	1
B	B－2		Orange	6
\bar{B}	A－2		Yellow	5
COM－A／COM	B－3		Green	3
COM－B／－	A－3		Blue	4
Signal	Connector B terminal no．	Shield	Cable color	Connector D terminal no．
Vcc	B－1	i1 \bigcirc	Brown	12
GND	A－1	1 1－	Black	13
$\overline{\mathrm{A}}$	B－2	\bigcirc	Red	7
A	A－2	$1 \times$ ，	Black	6
\bar{B}	B－3		Orange	9
B	A－3	$1, \mathcal{O M - 1}$	Black	8
SD＋（RX）	B－4	\cdots	Yellow	11
SD－（TX）	A－4	，	Black	10
			Black	3

［Robotic cable with lock for battery－less absolute（Step motor 24 VDC）］
LE－CE－
Cable length（L）［m］

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
B	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

＊1 Produced upon receipt of order

With lock and sensor

Weight

Product no．	Weight［g］	Note
LE－CE－1－B	240	
LE－CE－3－B	460	
LE－CE－5－B	740	
LE－CE－8－B	1170	Robotic cable
LE－CE－A－B	1460	
LE－CE－B－B	2120	
LE－CE－C－B	2890	

JXCE1/91/P1/D1/L1/M1/51/61 Series Precautions Relating to Differences in Controller Versions

As the controller version of the JXC series differs, the internal parameters are not compatible.
\square If using the JXC $\square 1 \square-B C$ or $J X C \square 1 \square-B C-E$, please use the latest version of the JXC-BCW (parameter writing tool).
-There are currently 3 versions available: version 1 products (V1. \square or $\mathrm{S} 1 . \square$), version 2 products (V2. \square or $\mathrm{S} 2 . \square$), and version 3 products (V3. \square or S3. \square). Keep in mind that in order to write a backup file (.bkp) to another controller with the JXC-BCW, it needs to be the same version as the controller that created the file. (For example, a backup file created by a version 1 product can only be written to another version 1 product, and so on.) A backup file for the electric actuator with battery-less absolute encoder can only be written between version 3.4 or higher product (the backup file of version 2 or earlier products cannot be written).

Identifying Version Symbols

[^7]
Electric Actuators with Battery-less Absolute Encoder Specific Product Precautions

Be sure to read this before handling the products. For safety instructions and electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Handling

\triangle Caution

1. Absolute encoder ID mismatch error at the first connection
When connecting the controller and actuator for the first time, an alarm "Absolute encoder ID does not match" always occurs. The actuator encoder ID number is registered to the controller by resetting the alarm and paring is completed. If a different controller is connected after paring, an alarm will be generated again. The actuator encoder ID number is registered to the controller by resetting the alarm and paring is completed, but paring is performed again by resetting the alarm.

ID number is automatically checked when the control power supply is turned on.
An error is output if the ID number does not match.
2. In strong magnetic field environments, some use is limited.
A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in a strong magnetic field environment, malfunction or failure may occur.
Do not expose the actuator motor to a magnetic field with a magnetic flux density of 1 mT or more.
When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or an electric actuators side by side, maintain of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.

Air cylinder installation with an auto switch is forbidden in the shaded area.
3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder.
The motor cable connector of an electric actuator with a battery-less absolute encoder is different from the electric actuator with an incremental encoder, connector cover dimensions are different. Take the dimensions below into design consideration.

Battery-less absolute encoder connector cover dimensions

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning:
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
Danger: Danger indicales a hazard with a high hevelof fisk which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

\triangle Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

[^0]: Items not listed are the same as those of the standard product.
 For details, refer to the Web Catalog.

[^1]: Use of auto switches for the guide rod type LEYG series

 - Auto switches must be inserted from the front side with the rod (plate) sticking out.
 - Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
 - Please consult with SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

[^2]: Items not listed are the same as those of the standard product.
 For details, refer to the Web Catalog.

[^3]: Items not listed (specifications, dimensions, etc.) are the same as those of the standard product. For details, refer to the Web Catalog.

[^4]: Items not listed (specifications, dimensions, etc.) are the same as those of the standard product. For details, refer to the Web Catalog.

[^5]: ＊To connect the teaching box（LEC－T1－3 $\square \mathrm{G} \square$ ）or controller setting kit （LEC－W2）to the controller，a conversion cable is required．

[^6]: * When the actuator is within the "In position" range in the pushing operation, it does not stop even if HOLD signal is input.

[^7]: Trademark
 EtherNet/IPTM is a trademark of ODVA.
 DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA.
 EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

