Digital Flow Switch

Applicable fluid Dry air, N2

Wide range of flow measurement with one product

Flow ratio* ${ }^{* 1} 00:$!
*1 Rated flow ratio is $10: 1$ for the current PF2A.

Compact, Space saving

Compared with the current PF2A
Weight
$\begin{gathered}\text { Approx. } \\ \text { reduction } \\ 290 \mathrm{~g} \Rightarrow 70 \mathrm{~g}\end{gathered}$
Compared with the current PF2A
Smallest settable increment: 1
Current PF2A: 5 L/min (200 L: $2 \mathrm{~L} / \mathrm{min}$)

Weight | Approx. 8% |
| :---: |
| reduction |
| $290 \mathrm{~g} \Rightarrow \mathbf{1 0 0} \mathrm{~g}$ |

500 L/1000 L/
2000 L type

Compared with the
PFMB7201 and PF2A721-03

PFMB 29
 S_{3}

New
3-Screen Display Digital Flow Monitor Allows for the monitoring of remote lines
PFG300 Series p .24

PFMB Series

2-Color Display Digital Flow Switch

Flow adjustment valve is integrated.

500 L/1000 L/2000 L type

200 L type

Reduces piping installation work and space requirements. Special design provides smooth adjustment to match needle rotations.

Flow adjustment valve

Response time

Can be selected from

$50 \mathrm{~ms} 0.05 \mathrm{~s} / 0.1 \mathrm{~s}_{\mathrm{s} l}$ $0.5 \mathrm{~s} 11.0 \mathrm{~s} / 2.0 \mathrm{~s}$

Response time can be set depending on application.

Grease-free

Piping variations

Straight

One-touch fitting $\varnothing 8$

Female thread Rc, NPT, G 1/4

Bottom
Female thread Rc, NPT, G 1/4

Reversible display

When the switch is used upside down, the orientation of the display can be rotated to make it easier to read.
When display is upside down.

With a reversible display function (Can be set with the reversible display mode.)

* For the straight section of piping, refer to "IN Side Straight Piping Length and Accuracy" on page 12.
(Functions (\triangleright Refer to pages 30 and 31 for details.)

\author{

- Output operation
 - Display color
 - Reference condition
 - Display mode
 - Response time
 - Display OFF mode
 - Setting of security code
 - External input function
 - Forced output function
 - Accumulated value hold
 - Peak/Bottom value display
 - Keylock function
 - Analog output free range function
 - Reversible display mode
 -Reset to the default settings
 - Error display function
 }

Digital flow switch to save energy!

Flow control is necessary for promoting energy saving in any application.
Saving energy starts from numerical control of the flow consumption of equipment and lines and clarification of the purpose and effect.

Digital display allows visualization of flow rate.
2-color display, Improved visibility

Remote control is possible with accumulated pulse.

Applications

- Flow control of N_{2} gas to prevent lead frame oxidation
- N_{2} blow prevents distortion of camera image due to a it turbuence.
- Accumulated indication shows the operating flow rate
- Control of purge air flow of ionizer • Flow control of the air for spray painting

© Mounting

[^0]

3-Screen Display Digital Flow Monitor PFG300 Series

Allows for the Monitoring of Remote Lines

-

Visualization of Settings

The sub screen (label) shows the item to be set.

Switches between displays

Easy Screen Switching

Simple 3-Step Setting

When the S button is pressed and the set value ($P_{-} 1$) is being displayed, the set value (threshold value) can be set. When the S button is pressed and the hysteresis ($\mathrm{H} _1$) is being displayed, the hysteresis value can be set.

With a snap shot function for set value reading Pressing the \triangle and \triangle buttons simultaneously
for a minimum of 1 second will make the set value shot (threshold value) the same as the current flow value.

NPN/PNP Switch Function

The number of stock items can be reduced.

Analog output of 0 to 10 V is also available.

Voltage output	1 to 5 V	Switchable
	0 to 10 V	
Current output	4 to 20 mA	Fixed

Convenient Functions

Copy function

The settings of the master monitor can be copied to the slave monitors.

Security code

The key locking function keeps unauthorized persons from tampering with the settings.

Power saving mode

Power consumption is reduced by turning off the monitor.

Current consumption*1	Reduction rate*2
25 mA or less	Approx. 50\% reduction

Input Range Selection (for Pressure/Flow rate)

The displayed value to the sensor input can be set as required
(Voltage input: 1 to $5 \mathrm{~V} / C u r r e n t ~ i n p u t: ~ 4 ~ t o ~ 20 ~ m A) ~$
Pressure switch/Flow switch can be displayed.
Display

Voltage input 1 V
Current input 4 mA
20 mA

A is displayed for 1 V (or 4 mA).
The range can be set as required.

- Pressure Sensor for General Fluids/PSE570

	A	B
PSE570	0	1,000
PSE573	-100	100
PSE574	0	500

Set A and B to the values shown in the table above.

Compact \& Lightweight

Compact: Max. 6 mm shorter
Lightweight: Max. $\mathbf{5}$ g lighter ($\mathbf{3 0} \mathbf{g} \boldsymbol{\rightarrow} \mathbf{2 5}$ g)

FUnctions ($>$ Refer to pages 32 to 34 for details.)

\author{

- Output operation
 - Simple setting mode
 - Display color
 - Delay time setting
 - Digital filter setting
}
- FUNC output switching function
- Selectable analog output function
- External input function
- Forced output function
- Accumulated value hold
- Peak/Bottom value display
- Setting of security code
- Keylock function
- Reset to the default settings
- Display with zero cut-off setting
- Selection of display on sub screen
- Analog output free range function
- Error display function
- Copy function
- Selection of power saving mode

Mounting

The bracket configuration allows for mounting in four orientations.

Flow Switch Flow Rate Variations

Series	Applicable fluid
PFMV	
	Dry air N 2

Detection method	Rated flow range [L/min]								
	-3	-2	-1	-0.5	0	0.5	1	2	3
Thermal type (MEMS)	,		,	,	0	0.5			'
		!	'	!	0		1		,
					0				3
		!	+	0.5		0.5			,
	-	1	-1				1		
	-3								3

Detection method

Smallest settable

 setitableincrement

PFM

$$
0.01 \mathrm{~L} / \mathrm{min} \mid
$$

PFMB

$1 \mathrm{~L} / \mathrm{min}$in $\left.\right|^{0:}$

Flow Switch Variations / Basic Performance Table

CONTENTS

2-Color Display Digital Flow Switch PFM/B Series 3-Screen Display Digital Flow Monitor PFG300 series

2-Color Display Digital Flow Switch PFMB Series
How to Orderp. 9
Specifications p. 11
Flow Range p. 12
Analog Output p. 12
Pressure Loss p. 12
IN Side Straight Piping Length and Accuracy p. 12
Internal Circuits and Wiring Examples p. 13
Construction: Parts in Contact with Fluid p. 14
Dimensions p. 153-Screen Display Digital Flow Monitor PFG300 SeriesHow to Orderp. 24
Specifications p. 25
Internal Circuits and Wiring Examples p. 26
Dimensions p. 27
PFMB/Function Details p. 30
PFG300/Function Details p. 32
Safety Instructions Back Cover

*1 Made to order
*2 ISO1179-1 compliant

*1 Made to order
Output specificationd

	OUT1	OUT2	Applicable monitor unit model
\mathbf{A}	NPN	NPN	-
\mathbf{B}	PNP	PNP	-
\mathbf{C}	NPN	Analog 1 to 5 V	PFG300 series
D	NPN	Analog 4 to 20 mA	PFG310 series
$\mathbf{E}^{* 1}$	PNP	Analog 1 to 5 V	PFG300 series
$\mathbf{F}^{* 1}$	PNP	Analog 4 to 20 mA	PFG310 series
$\mathbf{G}^{* 1}$	NPN	External input *2	-
$\mathbf{H}^{* 1}$	PNP	External input $* 2$	-

*1 Made to order
*2 Accumulated flow value, peak/bottom flow value can be reset by external signal input.

Option 1

Nil	Lead wire with connector (2 m) + Rubber cover for connector (Silicone rubber)
Lead wire with connector (2 m)	
Without lead wire with connector	* When only optional parts are required,
refer to Option 1/Part Nos. on page 10.	

*1 Certificate in both English and Japanese
*2 Made to order
-Unit specification

\mathbf{M}	SI unit only ${ }^{* 1}$
$\mathbf{N i l}$	Units selection function *2

*1 Fixed unit: Instantaneous flow: L/min
Accumulated flow: L
*2 This product is for overseas use only according to the New Measurement Act. (The SI unit type is provided for use in Japan.) Unit can be changed. Instantaneous flow: $L / \mathrm{min} \Leftrightarrow \mathrm{cfm}$

Accumulated flow: $\mathrm{L} \Leftrightarrow \mathrm{ft}^{3}$
Option 2•

| Nil | \mathbf{R} | S |
| :---: | :--- | :--- | :--- |
| | Bracket (For without flow adjustment valve)
 ZS-33-M | Bracket (For with straight type flow adjustment valve) |
| ZS-33-MS | | |

Panel mount adapter (For without flow adjustment valve) Panel mount adapter (For with flow adjustment valve)
ZS-33-J

* Options are shipped together with the product, but not assembled.

When only optional parts are required, refer to Option 2/Part Nos. on page 10.
DIN Rail Mounting Bracket (Ordered Separately)
ZS- $\mathbf{3 3} \mathbf{- R} \square$
Stations

$\mathbf{1}$	1 station
$\mathbf{2}$	2 stations
$\mathbf{3}$	3 stations
$\mathbf{4}$	4 stations
$\mathbf{5}$	5 stations

D

- The DIN rail should be provided by the customer.
- The DIN rail is not suitable for port size F02 (G1/4).

Option 1/Part Nos.

Option	Part no.	Qty.	Note
Lead wire with connector	ZS-33-D	1	Lead wire: 2 m
Rubber cover (Silicone rubber)	ZS-33-F	1	For connector

Option 2/Part Nos.

Option	Part no.	Qty.	Note
Bracket (for PFMB7201)	ZS-33-M	1	With 2 tapping screws (3×6)
Bracket (for PFMB7201S)	ZS-33-MS	1	With 3 tapping screws (3×6)
Panel mount adapter (for PFMB7201)	ZS-33-J	1	
Panel mount adapter (for PFMB7201S)	ZS-33-JS	1	
Bracket (for PFMB7501/7102)	ZS-42-C	1	With 4 tapping screws (3×6)
Bracket (for PFMB7202)	ZS-42-D	1	With 4 tapping screws (3×6)

Specifications

For flow switch precautions and specific product precautions, refer to the "Operation Manual" on the SMC website. Click here for details.

*1 Refer to the "Example of recommended pneumatic circuit" on page 2.
*2 When using the accumulated value hold function, use the operating conditions to calculate the product life, and do not exceed it. The maximum access limit of the memory device is 1 million times. If the product is operated 24 hours per day, the product life will be as follows:

- 5 min interval: life is calculated as $5 \mathrm{~min} \times 1$ million $=5$ million $\mathrm{min}=9.5$ years - 2 min interval: life is calculated as $2 \mathrm{~min} \times 1$ million $=2$ million $\mathrm{min}=3.8$ years If the accumulated value external reset is repeatedly used, the product life will be shorter than the calculated life.
*3 Do not release the OUT side piping port of the product directly to the atmosphere without connecting piping. If the product is used with the piping port released to atmosphere, accuracy may vary.
*4 The time from when the flow is changed by a step input (when the flow rate changes from 0 to the maximum value of the rated flow range instantaneously) until the switch output turns ON (or OFF) when set to be 90% of the rated flow rate *5 If the flow fluctuates around the set value, the width for setting more than
the fluctuating width needs to be set. Otherwise, chattering will occur.
6 When using a product with an analog output
*7 The time from when the flow is changed by a step input (when the flow rate changes from 0 to the maximum value of the rated flow range instantaneously) until the analog output reaches 90% of the rated flow rate
* 8 When using a product with an external input
*9 The flow rate given in the specifications is the value under standard conditions. *10 Setting is only possible for models with the units selection function.
*11 For details, refer to "IN Side Straight Piping Length and Accuracy" on page 12.
*12 For details, refer to "Construction: Parts in Contact with Fluid" on page 14.
*13 The accumulated flow display is the upper 3-digit, middle 3-digit, and lower 3 -digit (total of 9 digits) display. The position of the dots on the upper part of the screen indicates which digits are displayed.
* Products with tiny scratches, marks, or display color or brightness variations which do not affect the performance of the product are verified as conforming products.

Flow Range

Model	Flow range			
	-100 L/min $0 \mathrm{~L} / \mathrm{min}$, $200 \mathrm{~L} / \mathrm{min}$	$500 \mathrm{~L} / \mathrm{min}$	$1000 \mathrm{~L} / \mathrm{min}$	2000 L/min
PFMB7201	$2 \mathrm{~L} / \mathrm{min}$ $200 \mathrm{~L} / \mathrm{min}$ $2 \mathrm{~L} / \mathrm{min}$ $210 \mathrm{~L} / \mathrm{min}$ $-10 \mathrm{~L} / \mathrm{min}$			
PFMB7501	$5 \mathrm{~L} / \mathrm{min}$ $5 \mathrm{~L} / \mathrm{min}$ -25 L/min	500 L/min $525 \mathrm{~L} / \mathrm{min}$ 525 L/min		
PFMB7102	\square		1000 L/min $1050 \mathrm{~L} / \mathrm{min}$ 1050 L/min	
PFMB7202	$20 \mathrm{~L} / \mathrm{min}$ $20 \mathrm{~L} / \mathrm{min}$			2000 L/min $2100 \mathrm{~L} / \mathrm{min}$ $2100 \mathrm{~L} / \mathrm{min}$

Analog Output

Flow/Analog Output

	A	B	C
Voltage output	1 V	1.04 V	5 V
Current output	4 mA	4.16 mA	20 mA

Model	Minimum value of the rated flow range	Maximum value of the rated flow range
PFMB7201	$2 \mathrm{~L} / \mathrm{min}$	$200 \mathrm{~L} / \mathrm{min}$
PFMB7501	$5 \mathrm{~L} / \mathrm{min}$	$500 \mathrm{~L} / \mathrm{min}$
PFMB7102	$10 \mathrm{~L} / \mathrm{min}$	$1000 \mathrm{~L} / \mathrm{min}$
PFMB7202	$20 \mathrm{~L} / \mathrm{min}$	$2000 \mathrm{~L} / \mathrm{min}$

Pressure Loss (Reference Data)
PFMB7201 (for 200 L/min)
(Without flow adjustment valve)

PFMB7102 (for $1000 \mathrm{~L} / \mathrm{min}$)

PFMB7501 (for 500 L/min)

PFMB7202 (for 2000 L/min)

Flow Adjustment Valve Flow Rate Characteristics (Reference Value)

PFMB7201 (for 200 L/min)

INSide Straight Piping Length and Accuracy (Reference Data)

- The piping on the IN side must have a straight section of piping with a length of 8 cm or more If a straight section of piping is not installed, the accuracy can vary by approximately $\pm 2 \%$ F.S.
* "Straight section" means a part of the piping without any bends or rapid changes in the cross sectional area.
- When the PFMB7201 is connected to tubing, use a tube I.D. 5 mm just before the product.
- When the PFMB7501 or 7102 is connected to tubing, use a tube I.D. 9 mm or more just before the product.
The accuracy can vary by approximately $\pm 2 \%$ F.S. when such tubing is not used.

PFMB7201/7501/7102/7202

PFMB7 Series

Internal Circuits and Wiring Examples

Max. applied voltage: 28 V , Max. load current: 80 mA , Internal voltage drop: 1 V or less
NPN (1 output) + Analog (1 to 5 V) output type PFMB7 $\square \square \square-\square \square-C \square-\square \square \square$
NPN (1 output) + Analog (4 to 20 mA) output type PFMB7 $\square \square \square-\square \square-D \square-\square \square \square$

Max. applied voltage: 28 V , Max. load current: 80 mA , Internal voltage drop: 1 V or less C: Analog output: 1 to 5 V

Output impedance: $1 \mathrm{k} \Omega$
D: Analog output: 4 to 20 mA
Max. load impedance: 600Ω

Max. applied voltage: 28 V , Max. load current: 80 mA , Internal voltage drop: 1 V or less External input: Input voltage 0.4 V or less (Reed or Solid state input) for 30 ms or longer

Accumulated pulse output wiring examples

PNP (2 outputs) type

 PFMB7 $\square \square \square-\square \square-$ - $\square-\square \square \square$

Max. load current: 80 mA , Internal voltage drop: 1.5 V or less
PNP (1 output) + Analog (1 to 5 V) output type PFMB7 $\square \square \square-\square \square-\mathrm{E} \square-\square \square \square$
PNP (1 output) + Analog (4 to 20 mA) output type PFMB7 $\square \square \square-\square \square-\mathrm{F} \square-\square \square \square$

Max. Ioad current: 80 mA , Internal voltage drop: 1.5 V or less
E: Analog output: 1 to 5 V Output impedance: $1 \mathrm{k} \Omega$
F: Analog output: 4 to 20 mA Max. load impedance: 600Ω

PNP (1 output) + External input type

 PFMB7 $\square \square \square-\square \square-\mathrm{H} \square-\square \square \square$

Max. load current: 80 mA , Internal voltage drop: 1.5 V or less
External input: Input voltage 0.4 V or less (Reed or Solid state input) for 30 ms or longer

```
PNP (2 outputs) type
        PFMB7\square\square\square\square-\square\square-B\square-\square\square\square
PNP (1 output) + Analog output type
        PFMB7\square\square\square\square-\square\square-E\square-\square\square\square
        PFMB7\square\square\square-\square\square-F\square-\square\square\square
PNP (1 output) + External input type
    PFMB7\square\square\square\square-\square\square-H\square-\square\square\square
```


Construction: Parts in Contact with Fluid

PFMB7201

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Sensor body	PPS	
$\mathbf{2}$	Gasket	HNBR	
$\mathbf{3}$	Flow rectifier	Stainless steel 304	
$\mathbf{4}$	Sensor chip	Silicon	
$\mathbf{5}$	Printed circuit board	GE4F	
$\mathbf{6}$	Gasket	HNBR	
$\mathbf{7}$	Flow rectifier	Stainless steel 304	
$\mathbf{8}$	O-ring	FKM	Fluoro coating
$\mathbf{9}$	O-ring	FKM	Fluoro coating
$\mathbf{1 0}$	Fitting for piping	Brass	Electroless nickel plating
$\mathbf{1 1}$	O-ring	FKM	Fluoro coating
$\mathbf{1 2}$	Body	PBT	
$\mathbf{1 3}$	Gasket	HNBR	
$\mathbf{1 4}$	Bottom piping adapter	PBT	
$\mathbf{1 5}$	O-ring	HNBR	Fluoro coating
$\mathbf{1 6}$	Flow adjustment valve body	PBT	
$\mathbf{1 7}$	Body	Brass	Electroless nickel plating
$\mathbf{1 8}$	Needle	Brass	Electroless nickel plating
$\mathbf{1 9}$	O-ring	HNBR	Fluoro coating
$\mathbf{2 0}$	O-ring	HNBR	Fluoro coating

PFMB7501/7102/7202

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Sensor body	PPS	
$\mathbf{2}$	Gasket	HNBR	
$\mathbf{3}$	Flow rectifier	Stainless steel 304	
4	Sensor chip	Silicon	
$\mathbf{5}$	Printed circuit board	GE4F	
6	Gasket	HNBR	
$\mathbf{7}$	Body	PPS	
$\mathbf{8}$	Mesh	Stainless steel 304	
9	Spacer	PPS	
$\mathbf{1 0}$	O-ring	HNBR	
$\mathbf{1 1}$	O-ring	HNBR	
$\mathbf{1 2}$	Attachment	ADC	Coating

PFMB7 Series

Dimensions

PFMB7201-C8

PFMB7201-C8L

Dimensions

PFMB7201-(N)02

PFMB7201-(N)02L

PFMB7 Series

Dimensions

PFMB7201-F02

PFMB7201-F02L

Dimensions

PFMB7201S-C8

PFMB7201S-C8L

PFMB7 Series

Dimensions

PFMB7201S-(N)02

PFMB7201S-(N)02L

Dimensions

PFMB7201S-F02

PFMB7201S-F02L

PFMB7 Series

Dimensions

PFMB7201

Panel mount/

Without flow adjustment valve/Straight

Panel mount/

Without flow adjustment valve/Bottom

Panel Fitting Dimensions

Panel thickness 1 to 3.2 mm
*1 Piping entry direction: Minimum dimensions for bottom piping. If using straight piping, the piping material and tubing need to be taken into consideration when designing the system. If a bend (R) is used, limit it to R3 or less.

Panel mount/
 With flow adjustment valve/Straight

Panel mount/
With flow adjustment valve/Bottom

Panel Fitting Dimensions

Panel thickness 1 to $\mathbf{3 . 2} \mathbf{~ m m}$

*1 Piping entry direction: Minimum dimensions for bottom piping. If using straight piping, the piping material and tubing need to be taken into consideration when designing the system. If a bend (R) is used, limit it to R3 or less.

Dimensions

PFMB7201
With bracket/Without flow adjustment valve

With bracket/With flow adjustment valve

- The DIN rail should be provided by the customer.
- The DIN rail is not suitable for port size F02 (G1/4).

PFMB7 Series

Dimensions

PFMB7501/7102/7202

Model	Symbol	A	B	D	E	F	H	K	\mathbf{L}
PFMB7501/7102	70	30	43.7	37.2	15	14	26	18	13.6
PFMB7202	90	35	49.2	42.7	17.5	24	31	28	16.8

Model Symbol	Bracket dimensions				
	S	T	U	V	W
PFMB7501/7102	24	22	32	40	50
PFMB7202	30	30	42	48	58

Lead wire with connector
(Part no.: ZS-33-D)

23

3-Screen Display

Digital Flow Monitor

 PFG300 Series

Specifications

For flow switch precautions and specific product precautions, refer to the "Operation Manual" on the SMC website. Click here for details.

Model			PFG300 series			
Applicable SMC flow switch	Model		PFMB7201	PFMB7501	PFMB7102	PFMB7202
	Rated flow range*1		2 to $200 \mathrm{~L} / \mathrm{min}$	5 to $500 \mathrm{~L} / \mathrm{min}$	10 to $1000 \mathrm{~L} / \mathrm{min}$	20 to $2000 \mathrm{~L} / \mathrm{min}$
Flow	Set point range	Instantaneous flow	-10 to $210 \mathrm{~L} / \mathrm{min}$	-25 to $525 \mathrm{~L} / \mathrm{min}$	-50 to $1050 \mathrm{~L} / \mathrm{min}$	-100 to $2100 \mathrm{~L} / \mathrm{min}$
		Accumulated flow	0 to 999,999,999,999 L	0 to 999,999,999,990 L		
	Smallest settable increment	Instantaneous flow	$1 \mathrm{~L} / \mathrm{min}$			
		Accumulated flow	1 L	10 L		
	Accumulated volume per pulse (Pulse width $=50 \mathrm{~ms}$)		1 L /pulse		$10 \mathrm{~L} / \mathrm{pulse}$	
	Accumulated value hold function*3		Intervals of 2 or 5 minutes can be selected. The stored accumulated flow is held even when the power supply is OFF.			
Electrical	Power supply voltage		12 to 24 VDC $\pm 10 \%$			
	Current consumption		25 mA or less			
	Protection		Polarity protection			
Accuracy	Display accuracy		$\pm 0.5 \%$ F.S. \pm Minimum display unit (Ambient temperature of $25^{\circ} \mathrm{C}$)			
	Analog output accuracy		$\pm 0.5 \%$ F.S. (Ambient temperature of $25^{\circ} \mathrm{C}$)			
	Repeatability		$\pm 0.1 \%$ F.S. ± 1 digit			
	Temperature characteristics		$\pm 0.5 \%$ F.S. (Ambient temperature: 0 to $50^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ standard)			
Switch output	Output type		Select from NPN or PNP open collector output.			
	Output mode		Select from Hysteresis, Window comparator, Accumulated output, Accumulated pulse output, Error output, or Switch output OFF modes.			
	Switch operation		Select from Normal or Reversed output.			
	Max. load current		80 mA			
	Max. applied voltage (NPN only)		30 VDC			
	Internal voltage drop (Residual voltage)		NPN output: 1 V or less (at load current of 80 mA), PNP output: 1.5 V or less (at load current of 80 mA)			
	Response time*2		3 ms or less			
	Delay time*2		Select from $0.00,0.05$ to 0.1 s (increment of 0.01 s), 0.1 to 1.0 s (increment of 0.1 s), 1 to 10 s (increment of 1 s), $20 \mathrm{~s}, 30 \mathrm{~s}, 40 \mathrm{~s}, 50 \mathrm{~s}$, or 60 s			
	Hysteresis*4		Variable from 0			
	Protection		Short circuit protection			
Analog output*5	Output type		Voltage output: 1 to 5 V , 0 to 10 V (only when the power supply voltage is 24 VDC) Current output: 4 to 20 mA ($0 \mathrm{~L} / \mathrm{min}$ to maximum value of the rated flow)			
	Impedance	Voltage output	Output impedance: $1 \mathrm{k} \Omega$			
		Current output	Maximum load impedance: 300Ω (at power supply voltage of 12 V), 600Ω (at power supply voltage of 24 VDC)			
	Response time*2		50 ms or less			
External input*6	External input		Input voltage: 0.4 V or less (Reed or Solid state) for 30 ms or longer			
	Input mode		Select from Accumulated value external reset or Peak/Bottom value reset.			
Sensor input	Input type		Voltage input: 1 to 5 VDC (Input impedance: $1 \mathrm{M} \Omega$), Current input: 4 to 20 mA DC (Input impedance: 51Ω) ($0 \mathrm{~L} / \mathrm{min}$ to maximum value of the rated flow)			
	Connection method		Connector (e-CON)			
	Protection		Over voltage protection (Up to 26.4 VDC)			
Display	Display mode		Select from Instantaneous flow or Accumulated flow.			
	Unit*7	Instantaneous flow	L/min, cfm ($\mathrm{ft}^{3} / \mathrm{min}$)			
		Accumulated flow	$\mathrm{L}, \mathrm{ft}^{3}, \mathrm{~L} \times 10^{6}, \mathrm{ft}^{3} \times 10^{6}$			
	Display range	Instantaneous flow	-10 to $210 \mathrm{~L} / \mathrm{min}$	-25 to $525 \mathrm{~L} / \mathrm{min}$	-50 to $1050 \mathrm{~L} / \mathrm{min}$	-100 to $2100 \mathrm{~L} / \mathrm{min}$
		Accumulatediow*	0 to 999,999,999,999 L	0 to 999,999,999,990 L		
	Minimum display unit	Instantaneous flow	$1 \mathrm{~L} / \mathrm{min}$			
		Accumulated flow	1 L		10 L	
	Display type		LCD			
	Number of displays		3-screen display (Main screen, Sub screen)			
	Display color		1) Main screen: Red/Green, 2) Sub screen: Orange			
	Number of display digits		1) Main screen: 5 digits (7 segments), 2) Sub screen: 9 digits (7 segments)			
	Indicator LED		LED ON when switch output is ON OUT1/2: Orange			
Digital filter*8			Select from $0.00,0.05$ to 0.1 s (increment of 0.01 s), 0.1 to 1.0 s (increment of 0.1 s), 1 to 10 s (increment of 1 s), 20 s, or 30 s			
Environment	Enclosure		IP40			
	Withstand voltage		1000 VAC for 1 minute between terminals and housing			
	Insulation resistance		$50 \mathrm{M} \Omega$ or more (500 VDC measured via megohmmeter) between terminals and housing			
	Operating temperature range		Operating: 0 to $50^{\circ} \mathrm{C}$, Stored: -10 to $60^{\circ} \mathrm{C}$ (No condensation or freezing)			
	Operating humidity range		Operating/Stored: 35 to 85\% RH (No condensation or freezing)			
Standards			CE marking (EMC directive/RoHS directive)			
Weight	Body		25 g (Excluding the power supply/output connection lead wire)			
	Lead wire with connector		+39 g			

*1 Rated flow range of the applicable flow switch
*2 Value without digital filter (at 0.00 s)
*3 When using the accumulated value hold function, use the operating conditions to calculate the product life, and do not exceed it. The maximum access limit of the memory device is 1.5 million times. If the product is operated 24 hours per day, the product life will be as follows:

- 5 min interval: life is calculated as $5 \mathrm{~min} \times 1.5$ million $=7.5$ million $\mathrm{min}=14.3$ years
- 2 min interval: life is calculated as $2 \mathrm{~min} \times 1.5$ million $=3$ million $\mathrm{min}=5.7$ years If the accumulated value external reset is repeatedly used, the product life will be shorter than the calculated life.
*4 If the flow fluctuates around the set value, the width for setting more than the fluctuating width needs to be set. Otherwise, chattering will occur.
*5 Setting is only possible for models with analog output.
*6 Setting is only possible for models with external input.
*7 Setting is only possible for models with the units selection function.
*8 The response time indicates when the set value is 90% in relation to the step input.
*9 The accumulated flow display is the upper 6-digit and lower 6-digit (total of 12 digits) display. When the upper digits are displayed, $\times 10^{6}$ lights up.
* Products with tiny scratches, marks, or display color or brightness variations which do not affect the performance of the product are verified as conforming products.

Internal Circuits and Wiring Examples

-XY

-RT
-SV
NPN (2 outputs) + Copy function

-RT: NPN (2 outputs) + Analog voltage output -SV: NPN (2 outputs) + Analog current output

-RT: NPN (2 outputs) + External input
-SV: NPN (2 outputs) + External input

Accumulated pulse output wiring examples
NPN (2 outputs) type
Max. 28 V ,
Black OUT1

-XY
-RT
-SV
PNP (2 outputs) + Copy function

-RT: PNP (2 outputs) + Analog voltage output -SV: PNP (2 outputs) + Analog current output

-RT: PNP (2 outputs) + External input
-SV: PNP (2 outputs) + External input

PNP (2 outputs) type

PFG300 Series

Dimensions

Bracket A

(Part no.: ZS-46-A1)

Bracket configuration allows for mounting in four orientations.

Dimensions

Panel mount adapter

(Part no.: ZS-46-B)

Panel mount adapter + Front protection cover
(Part no.: ZS-46-D)

Power supply/output connection lead wire (Part no.: ZS-46-5L)

Sensor connector

(Part no.: ZS-28-C-1)

Pin no.	Terminal
1	DC (+)
2	N.C.
3	DC (-)
4	IN ${ }^{* 1}$

*1 1 to 5 V or 4 to 20 mA

Cable Specifications

Conductor cross section		$0.15 \mathrm{~mm}^{2}$ (AWG26)
Insulator	Outside diameter	1.0 mm
	Color	Brown, Blue, Black, White, Gray (5-core)
Sheath	Finished outside diameter	$ø 3.5$

PFG300 Series

Dimensions

Panel fitting dimensions

Individual mounting

Multiple (2 pcs. or more) secure mounting <Horizontal>

Panel mount example
<Horizontal>

Panel mount example <Vertical>

PFMB Series

Function Details

Output operation

The output operation can be selected from the following: Output (hysteresis mode and window comparator mode) corresponding to instantaneous flow or output (accumulated output and pulse output) corresponding to accumulated flow.
(Default setting: Hysteresis mode, Normal output)

Display color

The display color can be selected for each output condition. The selection of the display color provides visual identification of abnormal values. (The display color depends on OUT1 setting.)

Reference condition

The display unit can be selected from standard condition or normal condition

Standard condition: Flow rate converted to a volume at $20^{\circ} \mathrm{C}$ and 1 atm (atmosphere)
Normal condition: Flow rate converted to a volume at $0^{\circ} \mathrm{C}$ and 1 atm (atmosphere)

Display mode

The display mode can be selected from instantaneous flow or accumulated flow

Instantaneous flow display
Accumulated flow display

Response time

The response time can be selected to suit the application. (Default setting: 1 s) Abnormalities can be detected more quickly by setting the response time to 0.05 seconds. The effect of fluctuation and flickering of the display can be reduced by setting the response time to 2 seconds.

0.05 s
0.1 s
0.5 s
1 s
2 s

Display OFF mode

This function will turn the display OFF. In this mode, decimal points flash on the main screen. If any button is pressed during this mode, the display reverts to normal for 30 seconds to allow checking of the flow, etc.

Setting of security code

The user can select whether a security code must be entered to release the key lock. At a time of shipment from the factory, it is set such that a security code is not required.

External input function

This function can be used only when the optional external input is present. The accumulated flow, peak value, and bottom value can be reset remotely.
Accumulated value external reset: A function to reset the accumulated flow value when an external input signal is applied. In accumulated increment mode, the accumulated value will reset to and increase from zero. In accumulated decrement mode, the accumulated value will reset to and decrease from the set value.

* When the accumulated value is stored to memory, every time the accumulated value external reset is activated, the memory (EEPROM) will be accessed. Take into consideration that the maximum number of times the memory can be accessed is 1 million times. The total number of external inputs and the accumulated value memorizing time interval should not exceed 1 million times.
Peak/Bottom value reset: Peak and bottom value are reset.

- Forced output function

The output is turned on/off in a fixed state when starting the system or during maintenance. This enables confirmation of wiring and prevents system errors due to unexpected output.
For the analog output type, when ON the output will be 5 V or 20 mA , and when OFF, it will be 1 V or 4 mA .

* Also, an increase or decrease of the flow and temperature will not change the on/off status of the output while the forced output function is activated.

Accumulated value hold

The accumulated value is not cleared even when the power supply is turned off. The accumulated value is memorized every 2 or 5 minutes during measurement and continues from the last memorized value when the power supply is turned on again.
The life time of the memory device is 1 million access times. Take this into consideration before using this function.

Peak/Bottom value display

The maximum (minimum) flow rate is detected and updated from when the power supply is turned on. In peak (bottom) value display mode, this maximum (minimum) flow rate is displayed.

Keylock function

Prevents operation errors such as accidentally changing setting values

Analog output free range function

This function allows a flow that generates an output of 5 V or 20 mA to be changed. The value can be changed between 10% of the maximum value of the rated flow and the maximum value of the display range.

Flow [L/min] \longrightarrow
1000 L/min type

Reversible display mode

When the switch is used upside down, the orientation of the display can be rotated to make it easier to read by using the reversible display function.

Reset to the default settings

The product can be returned to its factory default settings.

PFMB Series

Error display function

When an error or abnormality arises, the location and contents are displayed.

Display		Error name	Description	Action
Er 1		OUT1 over current error	A load current of 80 mA or more is applied to the switch output (OUT1).	Eliminate the cause of the over current by
ErE		OUT2 over current error	A load current of 80 mA or more is applied to the switch output (OUT2).	turning it on again.
HHH		Instantaneous flow error	The flow rate exceeds the maximum value of the display range.	Decrease the flow rate.
LHL		Reverse flow error	There is a reverse flow equivalent to -5% or more.	Change the flow to the correct direction.
$\begin{gathered} 999999999 \\ \binom{\text { "999" will flash in any of upper, }}{\text { middle, lower 3-digit displays. }} \end{gathered}$	PFMB7201 PFMB7501 PFMB7102	Accumulated flow error	The flow rate exceeds the accumulated flow rate range.	Clear the accumulated flow rate.
Era				
Er4		System error	Internal data error	
Erb		System error	Internal data error	Turn the power off and then on again.
Erg				

If the error cannot be solved after the instructions above are performed, please contact SMC for investigation.

\triangle Precautions on piping

Piping for the metal attachment

- Tighten to the specified torque. Refer to the table below for the required torque values.
- Use a wrench suited for the required torque. Do not use an extremely large wrench (Total length of 40 cm or more).
- If the tightening torque is exceeded, the product can be broken. If the tightening torque is insufficient, the fitting may become loose.
- Avoid any sealant tape getting inside the flow path.
- Ensure there is no leakage after piping.
- When mounting the fitting, a wrench should be used on the metal part (attachment) of the fitting only. Holding other parts of the product with a wrench may damage the product. Specifically, make sure that the wrench does not damage the connector.

Model	Required torque
PFMB7201	12 to $14 \mathrm{~N} \cdot \mathrm{~m}$
PFMB7501	28 to $30 \mathrm{~N} \cdot \mathrm{~m}$
PFMB7102	
PFMB7202	

Model	Nominal thread size	Width across flats of attachment
PFMB7201	Rc1/4, NPT1/4	17 mm
	G1/4	21 mm
PFMB7501	$1 / 2$	30 mm
PFMB7102		
PFMB7202	$3 / 4$	35 mm

PFG300 Series

Function Details

Output operation

The output operation can be selected from the following:
Output (hysteresis mode and window comparator mode) corresponding to instantaneous flow or output (accumulated output and pulse output) corresponding to accumulated flow.
(Default setting: Hysteresis mode, Normal output)

Simple setting mode

Only the set values for instantaneous flow and accumulated flow can be changed. Output mode, output type, display color, and accumulate pulse output cannot be changed.

- Display color

The display color can be selected for each output condition. The selection of the display color provides visual identification of abnormal values.

Green for ON, Red for OFF Red for ON, Green for OFF

Red all the time
Green all the time

D Delay time setting

The time from when the instantaneous flow reaches the set value to when the switch output operates can be set. Setting the delay time can prevent the switch output from chattering.
(Default setting: 0 s)

0.00 s
0.05 to 0.1 s (increment of 0.01 s)
0.1 to 1.0 s (increment of 0.1 s)
1 to 10 s (increment of 1 s)
20 s
30 s
40 s
50 s
60 s

Digital filter setting

The time for the digital filter can be set to the sensor input. Setting the digital filter can reduce chattering of the switch output and flickering of the analog output and the display.
The response time indicates when the set

0.00 s
0.05 to 0.1 s (increment of 0.01 s)
0.1 to 1.0 s (increment of 0.1 s)
1 to 10 s (increment of 1 s)
20 s
30 s

(Default setting: 0 s)

FUNC output switching function

Analog output, external input, or copy function can be selected. (Default setting: Analog output)

Selectable analog output function

1 to 5 V or 0 to 10 V can be selected for the analog voltage output type. (Default setting: 1 to 5 V)

External input function

The accumulated flow, peak value, and bottom value can be reset remotely. Accumulated value external reset: A function to reset the accumulated flow value when an external input signal is applied. In accumulated increment mode, the accumulated value will reset to and increase from zero. In accumulated decrement mode, the accumulated value will reset to and decrease from the set value.

* When the accumulated value is stored to memory, every time the accumulated value external reset is activated, the memory will be accessed. Take into consideration that the maximum number of times the memory can be accessed is 1.5 million times. The total number of external inputs and the accumulated value memorizing time interval should not exceed 1.5 million times.
Peak/Bottom value reset: Peak and bottom value are reset.

Forced output function

The output is turned on/off in a fixed state when starting the system or during maintenance. This enables the confirmation of wiring and prevents system errors due to unexpected output.
For the analog output type: When ON, the output will be 5 V (or 10 V when 0 to 10 V is selected) or 20 mA , and when OFF, 1 V (or 0 V when 0 to 10 V is selected) or 4 mA .

* Also, an increase or decrease of the flow will not change the on/off status of the output while the forced output function is activated.

Accumulated value hold

The accumulated value is not cleared even when the power supply is turned off. The accumulated value is memorized every 2 or 5 minutes during measurement and continues from the last memorized value when the power supply is turned on again.
The maximum writable limit of the memory device is 1.5 million times, which should be taken into consideration.

Peak/Bottom value display

The maximum (minimum) flow rate is detected and updated from when the power supply is turned on. In peak (bottom) value display mode, this maximum (minimum) flow rate is displayed.

Setting of security code

The user can select whether a security code must be entered to release the key lock. At a time of shipment from the factory, it is set such that a security code is not required.

Keylock function

Prevents operation errors such as accidentally changing setting values

\square Reset to the default settings

The product can be returned to its factory default settings.

Display with zero cut-off setting

When the flow is close to $0 \mathrm{~L} / \mathrm{min}$, the product will round the value down and zero will be displayed. A flow value may be displayed even when the flow rate is $0 \mathrm{~L} / \mathrm{min}$ due to high pressure or depending on the installation. The zero cut function will force the display to zero. The range to display zero can be changed.

PFG300 Series

Selection of display on sub screen

The display on the sub screen in measuring mode can be set.

Set value display	Accumulated value display	Peak value display
Displays the set value	Displays the accumulated value	Displays the peak value
Bottom value display	Line name display	OFF
Displays the bottom value	Displays the line name (Up to 5 alphanumeric characters can be input.)	Displays nothing

Analog output free range function

This function allows a flow that generates an output of 5 V (or 10 V when 0 to 10 V is selected) or 20 mA to be changed. The value can be changed between 10% of the maximum value of the rated flow and the maximum value of the display range.

For analog voltage output of $\mathbf{0}$ to 10 V

Flow [L/min] \longrightarrow
2000 L/min type

Error display function

When an error or abnormality arises, the location and contents are displayed.

Display	Error name	Description	Action
$\begin{aligned} & E r \\ & E r I \end{aligned}$	OUT over current error	A load current of 80 mA or more is applied to the switch output (OUT).	Eliminate the cause of the over current by turning off the power supply and then turning it on again.
HH2H	Instantaneous flow error	The flow rate exceeds the maximum value of the display range.	Decrease the flow rate.
LLL	Reverse flow error	There is a reverse flow equivalent to -5\% or more.	Change the flow to the correct direction.
999959 flashes $\times 10^{6}$	Accumulated flow error	The flow rate exceeds the accumulated flow rate range.	Clear the accumulated flow rate.
ErI	System error	Internal data error	Turn the power off and then on again.
Er-			
ErE			
$E r 7$			
Erg			
Er 14			
Er-41]			
ErI]	Copy error	The copy function does not operate properly.	After clearing the error by pressing the and buttons simultaneously for a minimum of 1 second, check the wiring and the model, and then attempt to copy again.

If the error cannot be solved after the instructions above are performed, please contact SMC for investigation.

■ Copy function

The settings of the master monitor can be copied to the slave monitors, reducing setting labor and minimizing the risk of setting mistakes.
The set value can be copied to up to 10 flow monitors simultaneously. (Maximum transmission distance: 4 m)

1) Wire as shown in the figure on the left.
2) Select the slave monitor which is to be the master, and change it into a master using the buttons. (In the default setting, all flow monitors are set as slaves.)
3) Press the 5 button on the master monitor to start copying.

Selection of power saving mode

Power saving mode can be selected.

It shifts to the power saving mode without button operation for 30 seconds.
It is set to the normal mode (Power saving mode is OFF.) at a time of shipment from the factory.
(During power saving mode, [ECo] will flash in the sub screen and the operation light is ON (only when the switch is ON).)

* There may be a difference in the displayed value on the connected flow switch and the flow monitor. When the flow monitor display is being used, it is recommended to set the flow switch display to OFF mode.

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
Danger: Danger indicates a hazard with a high hevelof fisk which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

\triangle Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Revision History	
Edition B $* 20$ to 2000 L type has been added.	TS
Edition C	
$*$	The digital flow monitor PFG300 series has been added.

[^0]: Example of recommended pneumatic circuit
 Air quality in the product specification can be satisfied by using this pneumatic circuit.

